QDD-400COTU-5MCL

Coherent 400G ZR+ QSFP-DD DCO

Features

- Supports 425Gbps
- Single 3.3V Power Supply
- Power dissipation < 21W
- Up to 480km over SMF with EDFA
- RoHS compliant
- QSFP-DD MSA Compliant
- 8x53.125Gbps (PAM4) electrical interface
- Duplex LC connector
- Commercial case temperature range of 0°C to 70°C
- I2C interface with integrated Digital Diagnostic Monitoring
- Safety Certification: TUV/UL/FDA*1
- RoHS compliant

Applications

- 400G-ZR/ZR+ applications
- Data center interconnection
- DWDM networks

Product Description

QSFP-DD 400Gbps transceiver module is designed for optical communication applications in 400 Gigabit Ethernet links over 480km single mode fiber. This product converts 8 channels of 50 Gbps (PAM4) electrical input data to single channel of 400Gbps (DP-16QAM) coherent optical signals. Reversely, on the receiver side, 400Gbps (DP-16QAM) coherent optical signals is converted to 8 channels of 50Gbps (PAM4) electrical output data. The electrical interface of the module is compliant with the 400GAUI-8 interface as defined by IEEE 802.3bs, and the form factor, optical/electrical connection and digital diagnostic interface compliant with QSFP-DD MSA.

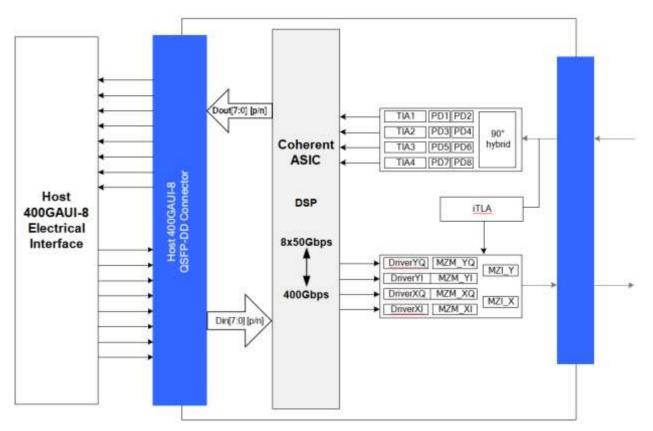


Figure 1: Transceiver Block Diagram

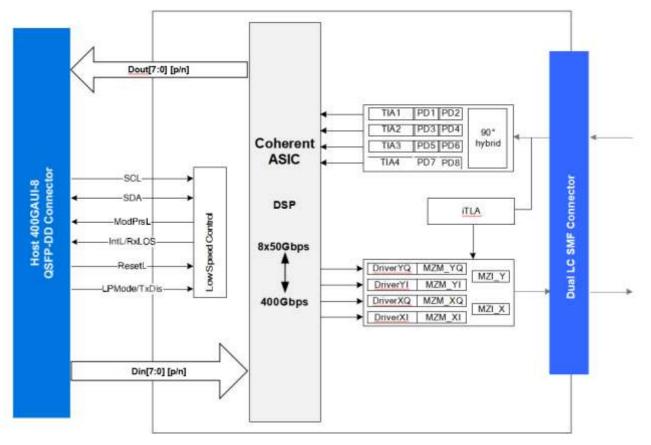


Figure 2: Application Reference Diagram

Transmitter

As shown in Figure 1, the transmitter path of the transceiver contains an 8x50Gbps 400GAUI-8 electrical input with equalization (EQ) block, integrated electrical multiplexer, iTLA, MZM and diagnostic monitor. The integrated electrical multiplexer converts 8 channels of 50 Gbps (PAM4) electrical input data to single channel of 400Gbps (DP-16QAM) optical signals.

Receiver

As shown in Figure 1, the receiver path of the transceiver contains eight PIN photodiodes, four trans- impedance amplifiers (TIA), integrated de-multiplexer and 8x50G 400GAUI-8 compliant electrical output blocks. The integrated de-multiplexer converts single channel of 400Gbps (DP-16QAM) optical signals to 8 channels of 50Gbps (PAM4) electrical output data.

High Speed Electrical Signal Interface

The interface between QSFP-DD module and ASIC/SerDes is shown in Figure 2. The high speed signal lines are internally AC-coupled and the electrical inputs are internally terminated to 100 Ohms differential. All transmitter and receiver electrical channels are compliant to module 400GAUI-8 specifications per IEEE 802.3bs.

Control Signal Interface

The control signal interface compliant with QSFP-DD MSA. The following pin are provided to control module or display the module status: ModPrsL, IntL/RxLOS, ResetL, LPMode/TxDis. In addition, there is an industry standard two wire serial interface scaled for 3.3 volt LVTTL. The definition of control signal interface and the registers of the serial interface memory are defined in the Control Interface & Memory Map section.

Handling and Cleaning

Exposure to current surges and over-voltage events can cause immediate damage to the transceiver module. Observe the precautions for normal operation of electrostatic discharge sensitive equipment; Attention shall also be paid to limiting transceiver module exposure to conditions beyond those specified in the absolute maximum ratings.

Optical connectors include female connectors. These elements will be exposed as long as the cable or port plug is not inserted. At this time, always pay attention to protection.

Each module is equipped with a port guard plug to protect the optical port. The protective plug shall always be in place whenever the optical fiber is not inserted. Before inserting the optical fiber, it is recommended to clean the end of the optical fiber connector to avoid contamination of the module optical port due to dirty connector. If contamination occurs, use standard LC port cleaning methods.

Absolute Maximum Ratings

Exceeding the absolute maximum ratings table may cause permanent damage to the device. This is just an emphasized rating, and does not involve the functional operation of the device that exceeds the specifications of this technical specification under these or other conditions. Long-term operation under absolute maximum ratings will affect the reliability of the device.

Parameter	Symbol	Min.	Typical	Max.	Unit
Storage Temperature	Ts	-40		85	°C
Relative Humidity	RH	5		85	%
Power Supply Voltage	Vcc	-0.5	3.3	3.6	V
Single Ended		-0.5		Vcc+0.5	V
Data Input Voltage					
Differential* ⁵				0.8	V

Note:This is the maximum voltage that can be applied across the differential inputs without damaging the input circuitry. The damage threshold of the module input shall be at least 1600 mV peak to peak differential.

Recommended Operating Conditions

For operations beyond the recommended operating conditions, optical and electrical characteristics are not defined, reliability is not implied, and such operations for a long time may damage the module.

Parameter	Symbol	Min.	Typical	Max.	Unit
Operating Case Temperature* ⁷	Тс	0		70	°C
Power Supply Voltage	Vcc	3.135	3.3	3.465	V
Power Supply Noise ^{*8}				66	mVpp
Power Dissipation	PD			21	W
Electrical Signal Rate Per Channel* ⁹			26.5625		GBd
Optical Signal Rate Per Channel* ¹⁰			60.138546798		GBd
Receiver Differential Data Output Load		100			Ohm
Fiber Length* ¹¹				480	km

Note:

1. Power Supply specifications, Instantaneous, sustained and steady state current compliant with QSFP-DD MSA Power Classification.

2. The position of case temperature measurement is shown in Figure 9. Continuous operation at the maximum Recommended Operating Case Temperature should be avoided in order not to degrade reliability.

3. Power Supply Noise is defined as the peak-to-peak noise amplitude over the frequency range at the host supply side of the recommended power supply filter with the module and recommended filter in place. Voltage levels including peak-to-peak noise are limited to the recommended operating range of the associated power supply. See Figure 7 for recommended power supply filter.

4. 400GAUI-8 operation with Host generated FEC. The transmitter must receive pre-coded FEC signals from the host ASIC.

5. 400G ZR+ operation with Line generated OFEC.

6. $9\mu m$ SMF with EDFA.

General Electrical Characteristics*12

Unless otherwise stated, the following characteristics are defined under recommended operating conditions.

Parameter	Symbol	Min.	Typical	Max.	Unit
Transceiver Power Consumption			18	19	W
Transceiver Power Supply Total Current			6060	6670	mA
AC Coupling Internal Capacitor			0.1		μF

Note: For control signal timing including LPWn/PRSn, INT/RSTn, SCL and SDA see Control Interface Section.

Reference Points

Test Point	Description
TP0 to TP5	The channel including the transmitter and receiver differential controlled impedance
	printed circuit board insertion loss and the cable assembly insertion loss.
TP1 to TP4	All cable assembly measurements are made between TP1 and TP4 as illustrated in Figure 3.
TP0 to TP2 TP3 to TP5	A mated connector pair has been included in both the transmitter and receiver specifications defined in 802.3cd 136.9.3 and 136.9.4. The recommended maximum insertion loss from TP0 to TP2 or from TP3 to TP5 including the test fixture is provided in 802.3cd 136.9.3.2
TP2	Unless specified otherwise, all transmitter measurements defined in 802.3cd 136.9.3 are made at TP2 utilizing the test fixture specified in Annex 136B.
TP3	Unless specified otherwise, all receiver measurements and tests defined in 802.3cd 136.9.4 are made at TP3 utilizing the test fixture specified in Annex 136B.

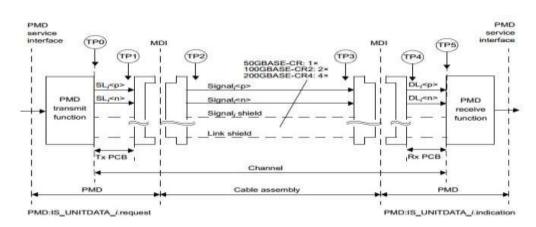
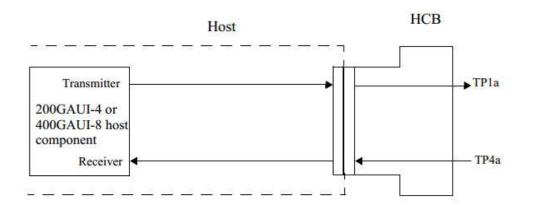
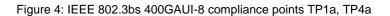




Figure 3: IEEE 802.3cd 50GBASE-CR, 100GBASE-CR2 or 200GBASE-CR4 link

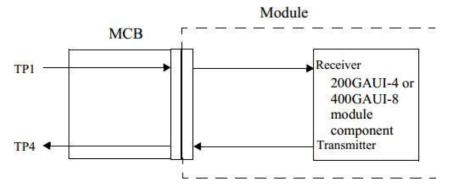


Figure 5: IEEE 802.3bs 400GAUI-8 compliance points TP1, TP4

High Speed Electrical Input Characteristics

Unless otherwise stated, the following characteristics are defined under recommended operating conditions.

Parameter	Test Point	Min.	Typical	Max.	Unit	Conditions
Signaling Rate, Per Lane (PAM4 Encoded)	TP1		26.5625		GBd	+/- 100 ppm
Differential Peak-Peak Input Voltage Tolerance	TP1a	900			mV	
Differential Input Return Loss (Min)	TP1		Equation (83E-5)		dB	802.3bs
Differential To Common Mode Input Return Loss (Min)	TP1		Equation (83E-6)		dB	802.3bs
Differential Termination Mismatch	TP1			10	%	

Single-Ended Voltage						
Tolerance Range	TP1a	-0.4		3.3	V	
DC Common-Mode Output						
Voltage* ¹³	TP1	-350		2850	mV	
Module Stressed Input Test						
*14						
Eye Width			0.22		UI	
Applied Peak-Peak						
Sinusoidal Jitter			Table 120E-6			802.3bs
Eye Height			32		mV	

Note:

1. DC common mode voltage generated by the host. Specification includes effects of ground offset voltage.

2. Module stressed input tolerance is measured using the procedure defined in 120E.1.1.

High Speed Electrical Output Characteristics

Parameter	Test Point	Min.	Typical	Max.	Unit
Signaling Rate Per Lane(Range)	TP4a		26.5625 ± 100 ppm		GBd
Differential Peak-To-Peak Input Voltage Tolerance	TP4			900	mV
Differential Input Return Loss (Min)	TP4a		Equation(83E-5)		dB
Differential To Common Mode Input Return Loss (Min)	TP4a		Equation(83E-6)		dB
Differential Termination Mismatch	TP4a			10	%
Common Mode Voltage	TP4a	-0.35		2.85	V

Unless otherwise stated, the following characteristics are defined under recommended operating conditions.

Transition time (20% to 80%)	TP4	9.5		ps

High Speed Optical Transmitter Characteristics

Unless otherwise stated, the following characteristics are defined under recommended operating conditions.

Parameter	Symbol	Min.	Typical	Max.	Unit
Signaling Speed		60.138546798±20ppm			GBd
Modulation format			DP-16QAM		
Channel frequency	λ	191.3	196.1		THz
Channel Spacing			100(75)		GHz
Wavelength Accuracy		-1.8		1.8	GHz
Tx Spectral Excursion		-32		32	GHz
Average launch power		-10	5	-6	deglace
Output power with Tx disabled	5		0	-20	dBm
I-Q Skew(per polarization) Output power during wavelength			0.75		ps
Laser RIN(0.2G时程标句GHz			-145	-20	dBm dB/Hz
Avg)		34			dB/0.1nm
Laser RIN(0.2GHz≤f≤10GHz Ou¶eetkband OSNR		23	-140		dB/0.1nm
Transm Titlen Habitieuis Satile atanse			100	-20	mgB
Transmitter back reflectance Transmitter tum-up time from warm telena nce			180	-24	sdB
Transmitter polarization dependent power				1.5	dBm
X-Y Skew				5	ps
DC I-Q offset(mean per polarization)				-26	dB
I-Q instantaneous offset				-20	dB
Mean I-Q amplitude imbalance				1	dB

Transmitter turn-up time from cold start		200	S
Transmitter wavelength switching time		180	S
Output power monitor Accuracy	2	2	dB

High Speed Optical Receiver Characteristics

Unless otherwise stated, the following characteristics are defined under recommended operating conditions.

Parameter	Symbol	Min.	Typical	Max.	Unit
Signaling Speed		6	0.138546798±20ppm		GBd
Channel frequency	λ	191.3		196.1	THz
Frequency offset between received carrier and LO		-3.6		3.6	GHz
Input power range		-12		13	dBm
Input sensitivity* ¹⁵	Sen	-12			dBm
OSNR Tolerance				24	dB/0.1nm
Optical return loss		20			dB
CD Tolerance		9600			ps/nm
Optical path OSNR penalty tolerance				0.5	dB
PMD tolerance		20			ps
Peak PDL tolerance		3.5			dB
Tolerance to change in SOP		50			Krad/s
Optical input power transient tolerance		-2		2	dB
Receiver turn-up time from warm start				10	S
Receiver turn-up time from cold start				200	S
Intput power monitor Accuracy		-4		4	dB
Optical Rx_LOS Assert Threshold	LOSA	-20			dBm
Optical Rx_LOS Deassert Threshold	LOSD			-15	dBm
Optical Rx_LOS Hysteresis		1		2.5	dBm

Note: Measured with conformance test signal at TP3 for the BER specified in Open ZR+ MSA clause.

Regulatory Compliance Issues

Various standard and regulations apply to the QDD-400COTU-5MCL modules. These include eye-safety, Component Recognition, RoHS, ESD, EMC and Immunity. Please

note the transmitter module is a Class 1 laser product. See Regulatory Compliance Table for details.

Electrostatic Discharge (ESD)

The QDD-400COTU-5MCL is complies with the ESD requirements described in the Regulatory Compliance Table. However, in the normal processing and operation of optical transceiver, the following two types of situations need special attention.

Case I: Before inserting the transceiver into the rack meeting the requirements of QSFP-DD MSA, ESD preventive measures must be taken to protect the equipment. For example, the grounding wrist strap, workbench and floor should be used wherever the transceiver is handled.

Case II: After the transceiver is installed, the electrostatic discharge outside the chassis of the host equipment shall be within the scope of system level ESD requirements. If the optical interface of the transceiver is exposed outside the host equipment cabinet, the transceiver may be subject to equipment system level ESD requirements.

Electromagnetic Interference (EMI)

Communication equipment with optical transceivers is usually regulated by FCC in the United States and CENELEC EN55032 (CISPR 32) in Europe. The compliance of QDD-400COTU-5MCL with these standards is detailed in the regulatory compliance table. The metal shell and shielding design of QDD-400COTU-5MCL will help equipment designers minimize the equipment level EMI challenges they face.

Flammability

QSFPDD-400G-ZR-XYS optical transceiver meets UL certification requirements, its constituent materials have heat and corrosion resistance, and the plastic parts meet UL94V-0 requirements

QSFP-DD Transceiver Electrical Pad Layout

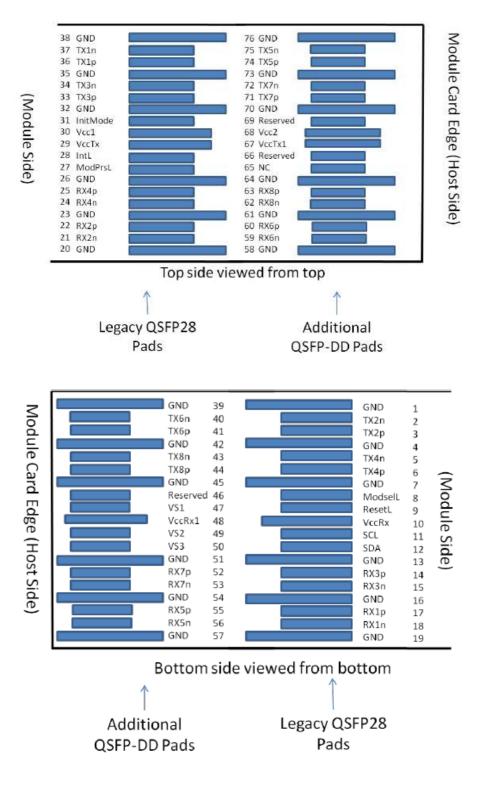


Figure 6: QSFP-DD Module Pinout

Pin Arrangement and Definition

Pin Logic Sym	Description	Plug	Notes
---------------	-------------	------	-------

		bol		Sequence	
1		GND	Ground	1B	1
2	CML-I	Tx2n	Transmitter Inverted Data Input	3B	
3	CML-I	Tx2p	Transmitter Non-Inverted Data Input	3B	
4		GND	Ground	1B	1
5	CML-I	Tx4n	Transmitter Inverted Data Input	3B	
6	CML-I	Tx4p	Transmitter Non-Inverted Data Input	3B	
7		GND	Ground	1B	1
8	LVTTL-I	ModSelL	Module Select	3B	
9	LVTTL-I	ResetL	Module Reset	3B	
10		VccRx	+3.3V Power Supply Receiver	2B	2
11	LVCMOS- I/O	SCL	2-wire serial interface clock	3B	
12	LVCMOS- I/O	SDA	2-wire serial interface data	3B	
13		GND	Ground	1B	1
14	CML-O	Rx3p	Receiver Non-Inverted Data Output	3B	
15	CML-O	Rx3n	Receiver Inverted Data Output	3B	
16		GND	Ground	1B	1
17	CML-O	Rx1p	Receiver Non-Inverted Data Output	3B	
18	CML-O	Rx1n	Receiver Inverted Data Output	3B	
19		GND	Ground	1B	1
20		GND	Ground	1B	1
21	CML-O	Rx2n	Receiver Inverted Data Output	3B	
22	CML-O	Rx2p	Receiver Non-Inverted Data Output	3B	
23		GND	Ground	1B	1
24	CML-O	Rx4n	Receiver Inverted Data Output	3B	-
25	CML-O	Rx4p	Receiver Non-Inverted Data Output	3B	
26		GND	Ground	18	1
20	LVTTL-O	ModPrsL	Module Present	3B	
28	LVTTL-0	IntL	Interrupt	3B 3B	
20		VccTx	+3.3V Power supply transmitter	2B	2
30		Vcc1x Vcc1	+3.3V Power supply	2B	2
31	LVTTL-I	LPMode	Low Power Mode	3B	2
		GND	Ground	1B	1
32	CML I			3B	1
33	CML-I CML-I	Tx3p	Transmitter Non-Inverted Data Input Transmitter Inverted Data Input	3B	
34	CMIL-I	Tx3n	-	-	
35	CMI I	GND	Ground	1B	1
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input	3B	
37	CML-I	Tx1n	Transmitter Inverted Data Input	3B	
38		GND	Ground	1B	1
39		GND	Ground	1A	1
40	CML-I	Tx6n	Transmitter Inverted Data Input	3A	
41	CML-I	Тх6р	Transmitter Non-Inverted Data Input	3A	
42		GND	Ground	1A	1
43	CML-I	Tx8n	Transmitter Inverted Data Input	3A	
44	CML-I	Тх8р	Transmitter Non-Inverted Data Input	3A	
45		GND	Ground	1A	1
46		Reserved	For future use	3A	3
47		VS1	Module Vendor Specific 1	3A	3
48		VccRx1	3.3V Power Supply	2A	2

49		VS2	Module Vendor Specific 2	3A	3	
50		VS3	Module Vendor Specific 3 3A		3	
51		GND	Ground	1A		
52	CML-O	Rx7p	Receiver Non-Inverted Data Output	eiver Non-Inverted Data Output 3A		
53	CML-O	Rx7n	Receiver Inverted Data Output			
54		GND	Ground	1A	1	
55	CML-O	Rx5p	Receiver Non-Inverted Data Output	3A		
56	CML-O	Rx5n	Receiver Inverted Data Output	3A		
57		GND	Ground	1A	1	
58		GND	Ground	1A 1		
59	CML-O	Rx6n	Receiver Inverted Data Output	3A		
60	CML-O	Rx6p	Receiver Non-Inverted Data Output	3A		
61		GND	Ground	1A	1	
62	CML-O	Rx8n	Receiver Inverted Data Output	erted Data Output 3A		
63	CML-O	Rx8p	Receiver Non-Inverted Data Output 3A			
64		GND	Ground 1A		1	
65		NC	No Connect 3A		3	
66		Reserved	For future use	3A 3		
67		VccTx1	3.3V Power Supply 2A		2	
68		Vcc2	3.3V Power Supply 2A		2	
69		Reserved	For Future Use 3A		3	
70		GND	Ground 1A		1	
71	CML-I	Tx7p	Transmitter Non-Inverted Data Input	3A		
72	CML-I	Tx7n	Transmitter Inverted Data Input	3A		
73		GND	Ground 1A		1	
74	CML-I	Tx5p	Transmitter Non-Inverted Data Input	3A	3A	
75	CML-I	Tx5n	Transmitter Inverted Data Input	3A		
76		GND	Ground 1A		1	

1: QSFP-DD uses common ground (GND) for all signals and supply (power). All are common within the QSFP-DD module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal-common ground plane.

2: VccRx, VccRx1, Vcc1, Vcc2, VccTx and VccTx1 shall be applied concurrently. VccRx, VccRx1, Vcc1, Vcc2, VccTx and VccTx1 may be internally connected within the module in any combination. The connector Vcc pins are each rated for a maximum current of 1000 mA.

3: All Vendor Specific, Reserved and No Connect pins may be terminated with 50 ohms to ground on the host. Pad
65 (No Connect) shall be left unconnected within the module. Vendor specific and
Reserved pads shall have an impedance to GND that is greater than 10 k Ohms and less than 100 pF.

4: Plug Sequence specifies the mating sequence of the host connector and module. The sequence is 1A, 2A, 3A, 1B, 2B, 3B. Contact sequence A will make, then break contact with additional QSFP-DD pads. Sequence 1A, 1B will then occur simultaneously, followed by 2A, 2B, followed by 3A, 3B.

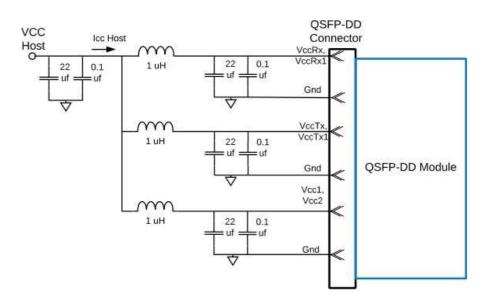


Figure 7: Host Board Power Supply Filter

During power transient events, the host should ensure that any neighboring modules sharing the same supply stay within their specified supply voltage limits. The host should also ensure that the intrinsic noise of the power rail is filtered in order to guarantee the correct operation of the optical modules. The reference power supply filter is shown in Figure 7.

Package Outline

The module is designed to meet the package outline defined in the QSFP-DD MSA specification. See the package outline for details.

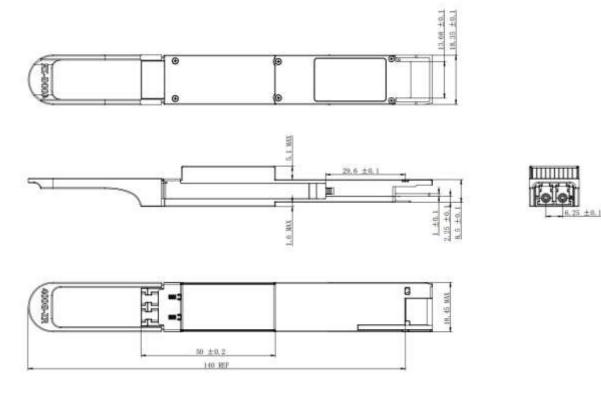


Figure 8: Mechanical Package Outline (All dimensions in mm)

*This 2D drawing is only for reference, please check with Eoptolink before ordering.

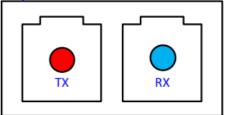

The bellow picture shows the location of the hottest spot for measuring module case temperature. In addition, the digital diagnostic monitors (DDM) temperature is also calibrated to this spot

Figure 9: Case Temperature Measurement Point (All dimensions in mm)

The optical interface port is a male Duplex LC connector as specified iTIA-604-10.

Duplex LC

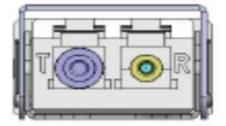


Figure 10: Module Optical Interface (looking into the optical port)

Control Interface & Memory Map

The control interface combines dedicated signal lines for ModeSelL, ResetL, LPMode/TxDis, ModPrsL, IntL/RxLOS with two-wire serial (TWS), interface clock (SCL) and data (SDA), signals to provide users rich functionality over an efficient and easily used interface.

SCL and SDA

The SCL and SDA is a hot plug interface that may support a bus topology. During module insertion or removal, the module may implement a pre- charge circuit which prevents corrupting data transfers from other modules that are already using the bus.

ModSelL

The ModSelL is an input signal that shall be pulled to Vcc in the QSFP-DD modules. When held low by the host, the module responds to TWI serial communication commands. The ModSelL allows the use of multiple QSFP-DD modules on a single TWI interface bus. When ModSelL is "High", the module shall not respond to or acknowledge any TWI interface communication from the host.

In order to avoid conflicts, the host system shall not attempt TWI interface communications within the ModSelL de-assert time after any QSFP-DD modules are deselected. Similarly, the host must wait at least for the period of the ModSelL assert time before communicating with the newly selected module. The assertion and de-asserting periods of different modules may overlap as long as the above timing requirements are met.

ResetL

The ResetL signal shall be pulled to Vcc in the module. A low level on the ResetL signal for longer than the minimum pulse length (t_Reset_init) initiates a complete module reset, returning all user module settings to their default state.

LPMode/TxDis

LPMode/TxDis is a dual-mode input signal from the host operating with active high logic. It shall be pulled towards Vcc in the module. At power-up or after ResetL is deasserted LPMode/TxDis behaves as LPMode. If supported, LPMode/TxDis can be configured as TxDis using the TWI interface except during the execution of a reset. LPMode is used in the control of the module power mode.

When LPMode/TxDis is configured as LPMode, the module behaves as though TxDis=0. By using the LPMode signal and a combination of the Power_override, Power_set and High_Power_Class_Enable software control bits the host controls how much power a module can consume. When LPMode/TxDis is configured as TxDis, the module behaves as though LPMode=0.

Changing LPMode/TxDis mode from LPMode to TxDis when the LPMode/TxDis state is high disables all optical transmitters. If the module was in low power mode, then the module transitions out of low power mode at the same time. If the module is already in high power state (Power Override control bits) with transmitters already enabled, the module shall disable all optical transmitters. Changing the LPMode/TxDis mode from LPMode to TxDis when the LPMode/TxDis state is low, simply changes the behavior of the mode of LPMode/TxDis. The behavior of the module depends on the Power Override control bits.

ModPrsL

ModPrsL shall be pulled up to Vcc Host on the host board and pulled low in the module. The ModPrsL is asserted "Low" when the module is inserted. The ModPrsL is deasserted "High" when the module is physically absent from the host connector due to the pull-up resistor on the host board.

IntL/RxLOSL

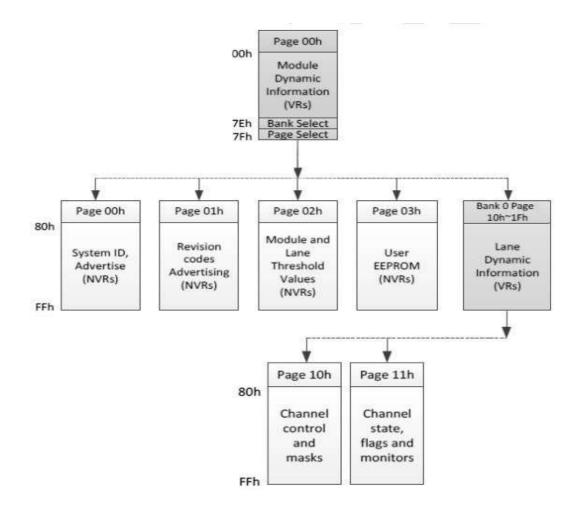
IntL/RxLOSL is a dual-mode active-low, open-collector output signal from the module. It shall be pulled up towards Vcc on the host board. At power-up or after ResetL is released to high, IntL/RxLOSL

is configured as IntL. When the IntL signal is asserted Low it indicates a change in module state, a possible module operational fault or a status critical to the host system. The host identifies the source of the interrupt using the TWI serial interface. The IntL signal is deasserted "High" after all set interrupt flags are read. If dual mode operation supported, IntL/RxLOSL can be optionally programmed as RxLOSL using the TWI interface except during the execution of a reset. If the module has no interrupt flags asserted (IntL/RxLOSL is high), there should be no change in IntL/RxLOSL states after the mode change.

If IntL/RxLOSL is configured as RxLOSL, a low indicates that there is a loss of received optical power on at least one lane. "High" indicates that there is no loss of received optical power. The actual condition of loss of optical receive power is specified by other governing documents, as the alarm threshold level is application specific. The module shall pull RxLOSL to low if any lane in a multiple lane module or cable has a LOS condition and shall release RxLOSL to high only if no lane has a LOS condition.

Parameter	Symbol	Min.	Typical	Max.	Unit
SCL and SDA	VOL	0		0.4	V
VOH	VCC-0.5		VCC+0.3	V	
SCL and SDA	VIL	-0.3		VCC*0.3	V
VIH	VCC*0.7		VCC+0.5	V	
LPMode/TxDis, ResetL, ModSelL	VIL	-0.3		0.8	V

Low Speed Control and Sense Signals


Memory Map

The control interface and memory map of the QSFP-DD module is compliant with the QSFP-DD MSA. The QSFP-DD module support I2C interface protocol defined by the QSFP-DD MSA. Access clock frequency support a minimum of 100 kHz with no clock stretching.

- 1. The module initialize in hardware mode when LPMode is de-asserted.
- 2. The transmitter is disabled when the module is held in reset.
- 3. Tx and Rx squelch function are implemented as defined by the QSFP-DD MSA.

QDD-400COTU-5MCL

Product Datasheet

Ordering Information

Part Number	Product Description	
QDD-400COTU-5MCL	400Gbps, SMF , 480KM, Duplex LC, 0~70 $^\circ\!\mathrm{C}$, with DDM	